7% [2] In critically ill patients, the majority of infections ar

7% [2]. In critically ill patients, the majority of infections are caused by bacteria but fungal infections, although these account for only 4.6% of all infections, have a significant impact on public health. [2]. Mixed fungal/bacterial infections are not uncommon, incidences of combined Candida and bacterial SB202190 solubility dmso bloodstream infections have been reported in as many as 23% of all episodes of candidaemia [3]. Despite its relatively low frequency, fungal blood stream infections can progress to severe sepsis and septic shock, associated with a drastic rise in mortality; therefore, early and appropriate

treatment of such infections is critical [4, 5]. Since molecular diagnosis in sepsis is reliable, and faster than the classical AZD3965 molecular weight blood-culturing techniques, there has been an increase in interest in methods such as PCR, ligase chain reaction, nucleic acid sequence based amplification, and nested PCR [6, 7]. Nevertheless, these molecular approaches are applied only following the positivity of the blood culture; therefore, they require a substantial amount of elapsed time. In contrast, the LightCycler PCR assay is fast, reliable and relatively easy to perform – even in small laboratories. This method is based on a previously-reported fluorescence resonance energy transfer

(FRET) technique which involves a distance-dependent interaction between the electronic excited states of two dye molecules [8]. The excitation is transferred from a donor (anchor) molecule to an acceptor (quencher) molecule, without emission of a photon, and has been proved to be an appropriate method for discriminating between the commonly occurring pathogen G + and G- bacteria [9]. The differentiation, via the melting temperature of the overall PCR product and the melting point of the probes, allowed creation subgroups within the G + and G- stains, and this system required less than 4 h, inclusive of the time need for the DNA preparation and the evaluation of the PCR results [10]. Until now, parallel detection of fungal and bacterial infections in a real-time system has been an unresolved problem however there

are for several tests in the market with the same purpose. Some of them detect bacteria, without fungal identification (Prove-It; Mobidiag, Helsinki, Finland or SeptiTest; Molzym, Bremen, Germany). The Reflex PCR assay (Molzym, Bremen, Germany) includes several steps after the PCR which increases the time required. The SepiFast (Roche; Basel, Switzerland) assay is similar to our system but works with three parallel reaction vessels and a different principle for detection. Furthermore, it requires individual molecular laboratory, equipments and software. Identification of the most common clinically relevant fungi is possible through a simple melting-point analysis relating to the ITS2 (internal transcribed spacer) region.

Comments are closed.