As early as the 1970′s, Kerr et al had linked apoptosis to the elimination of potentially malignant cells, hyperplasia and tumour progression [8]. Hence, reduced apoptosis or its resistance plays a vital role in carcinogenesis. There are many ways a malignant cell can acquire reduction in apoptosis or apoptosis resistance. Generally, the mechanisms by which evasion of apoptosis occurs can be broadly
dividend into: 1) disrupted balance of pro-apoptotic and anti-apoptotic proteins, 2) reduced caspase function and 3) impaired death receptor signalling. Figure 2 summarises the mechanisms that contribute to evasion of apoptosis and carcinogenesis. Figure Raf inhibitor 2 Mechanisms contributing to evasion of apoptosis and carcinogenesis. 3.1 Disrupted balance of pro-apoptotic and anti-apoptotic proteins Many proteins have been mTOR inhibitor reported to exert pro- or anti-apoptotic activity
in the cell. It is not the absolute quantity but rather the ratio of these pro-and anti-apoptotic proteins that plays an important role in the regulation of cell death. Besides, over- or under-expression of certain genes (hence the resultant regulatory proteins) have been found to contribute to carcinogenesis by reducing apoptosis in cancer cells. 3.1.1 The Bcl-2 selleck compound family of proteins The Bcl-2 family of proteins is comprised of pro-apoptotic and anti-apoptotic proteins that play a pivotal role in the regulation of apoptosis, especially via the intrinsic pathway as they reside upstream of irreversible cellular damage and act mainly at the mitochondria level [33]. Bcl-2 was the first protein of this family to be identified more than 20 years ago and it is encoded by the BCL2 gene, which derives its name from B-cell lymphoma 2, the second member of a range of proteins found in human B-cell lymphomas with the t (14; 18) chromosomal
translocation [26]. All the Bcl-2 members are located on the outer mitochondrial membrane. Resveratrol They are dimmers which are responsible for membrane permeability either in the form of an ion channel or through the creation of pores [34]. Based of their function and the Bcl-2 homology (BH) domains the Bcl-2 family members are further divided into three groups [35]. The first group are the anti-apoptotic proteins that contain all four BH domains and they protect the cell from apoptotic stimuli. Some examples are Bcl-2, Bcl-xL, Mcl-1, Bcl-w, A1/Bfl-1, and Bcl-B/Bcl2L10. The second group is made up of the BH-3 only proteins, so named because in comparison to the other members, they are restricted to the BH3 domain. Examples in this group include Bid, Bim, Puma, Noxa, Bad, Bmf, Hrk, and Bik.