The distribution of bacterial phyla in the saliva and fecal samples is provided in Additional file 3: Table S2; while overall the same phyla are abundant in both saliva and fecal samples, there are differences in the order of abundance (for example, the AZD8931 mouse phylum Firmicutes is most abundant in fecal samples while the phylum Proteobacteria is most abundant in saliva samples). The average correlation coefficient for the distribution of bacterial phyla (regardless of the host species) was higher among fecal samples (average r = 0.86) and among saliva samples (average r = 0.86) than between fecal and saliva samples (average
r = 0.56). Lower correlation coefficients were obtained for the comparison between fecal
and saliva samples from the same species (humans: this website find more r = 0.61; bonobos: r = 0.59; chimpanzees: r = 0.59). Thus, this analysis indicates that the microbiome tends to be more similar in the same sample type (saliva or fecal) across different species than in different sample types from the same species. However, it should be noted that different individuals from different locations were analyzed for the fecal vs. saliva microbiome, and moreover different regions of the 16S rRNA molecule were analyzed. It would be desirable to further investigate this issue by analyzing the same region of the 16S rRNA molecule in fecal and saliva samples from the same individuals. Core microbiome The evaluation and characterization of the core microbiome associated with a particular habitat (defined as the set of microbial OTUs that are characteristic of that habitat and thus may be important for microbiome function in that habitat) is a fundamental concern in studies of microbiome diversity [2, Thalidomide 21, 22]. This issue is complicated by the fact that there are various ways to define a core microbiome, as well as to assess whether or not a particular OTU is characteristic of an assemblage
[22]. It seems reasonable to suppose that a core microbiome should be characteristic of a species (or of closely-related species); we therefore investigated the existence of a Homo saliva core microbiome by considering the OTUs shared by both human groups and absent in the apes, and similarly the existence of a Pan saliva core microbiome by considering the OTUs shared by both chimpanzees and bonobos and absent in the two human groups. We adopt a conservative approach and consider an OTU as belonging to the Homo core microbiome if it is present in at least one member of each human group (and absent from bonobos and chimpanzees), and as belonging to the Pan core microbiome if it is present in at least one chimpanzee and one bonobo (and absent from all humans).