These changes may broaden the substrate binding pocket and enhanc

These changes may broaden the substrate binding pocket and enhance hydrophobicity of the substrate binding pocket, supporting that PlyU is able to recognize 2-(2-methylbutyl)malonyl 3 as an unusual extender unit (Figure  2C). Compared to PlyU, PlyV contains an active DH domain and an enoyl Lonafarnib purchase reductase (ER) domain. The conserved motif (HAFH)

of PlyV-AT signifies it specific for malonyl-CoA as the extender unit (Figure  2B and Additional file 1: Figure S2). Taken together, PlyTUVW seem to be sufficient https://www.selleckchem.com/products/AZD8931.html for the assembly of the C15 acyl side chain of PLYA. Biosynthesis of 2-(2-methylbutyl)malonyl extender unit 3 The structural analysis of PLYs and PKS architecture suggest that an unusual PKS extender unit 2-(2-methylbutyl)malonyl-CoA (or ACP, 3) is required FHPI cell line for the assembly of the C15 acyl side chain of PLYs. The biosynthesis of the 2-(2-methylbutyl)malonyl-CoA (or ACP) extender unit 3 would involve a reductive carboxylation mediated by a crotonyl-CoA reductase/carboxylase (CCR) homolog. Similar reactions have been reported for formation of ethylmalony-CoA [28, 29], 2-(2-chloroethyl)malonyl-CoA [30], and hexylmalonyl-CoA [31], as well as proposed

for involvement of biosynthesis of cinnabaramides [32], thuggacins [33], sanglifehrins [34], germicidins and divergolides [35], ansalactams [36] and many other natural products. Analysis of the ply cluster reveals orf5 encoding a CCR TgaD homolog (identity/similarity, 46%/59%) that was proposed to be involved in the biosynthesis of hexylmalonyl-CoA, check an extender unit for the assembly of thuggacin [33]. orf6, adjacent to orf5, encodes a protein shared 71% identity and 81% similarity with 3-oxoacyl-ACP synthase III from S. roseosporus NRRL 15998. The gene orf7, located upstream of orf6, encodes an

ACP that contains a catalytic motif DLDLDSL (the Serine is for phosphopantethein modification) [24]. The presence of these two genes indicates that the extender unit 2-(2-methylbutyl)malonyl may be tethered to ACP, not to CoA. In study of the biosynthesis of isobutylmalonyl-CoA extender unit for germicidins and divergolides, CCR, KSIII and HBDH (a 3-hydroxybutyryl-CoA hydrogenase) are transcribed in the same operon [35]. orf567 and other three genes orf8910 also constitute an operon (Figure  2A). The genes orf8910 encode α-keto acid dehydrogenase E2 component, E1 component β and α subunits, respectively, suggesting their involvement of the biosynthesis of 3 by reduction of the β-keto group (Figure  2C). Given that the previous feeding study with isotope-labeled precursor suggested this 2-(2-methylbutyl)malonyl unit derived from isoleucine via a transamination [18], we proposed that an aminotransferase is required for the formation of α-keto acid, as shown in Figure  2C. plyN is the only identified aminotransferase gene, so we constructed the ΔplyN mutant by replacement of the plyN gene with the aac(3)IV-oriT cassette (Additional file 1: Scheme S2).

Comments are closed.